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Abstract

Volleyball damping corresponds to linear damping up to a certain critical velocity, with zero damping above this value.

The dynamics of a linear harmonic oscillator is investigated with this damping mechanism.

r 2005 Elsevier Ltd. All rights reserved.
The harmonic oscillator equation forms the basis for the analysis of many dynamic systems having a linear
relationship between the elastic force and the extension from the equilibrium position [1]. The next level of
approximation includes the affects of dissipative forces. Such damping terms include those generated
by a range of dissipative phenomena [1,2]: Coulomb, cubic, linear, quadratic, and negative feedback. The
particular case

€xþ x ¼ ��½aj _xj _xþ b _xþ c signð _xÞ� (1)

was investigated by Mickens [2]. In this differential equation the parameters ð�; a; b; cÞ are non-negative
parameters and are coefficients of terms representing quadratic, linear, and Coulomb damping. The purpose
of this communication is to study the dynamics of the linear oscillator system acted on by so-called ‘‘volleyball
damping’’ (VBD). This type of dissipative force appears to play an important role in understanding the
behavior of the ball in a game of volleyball [3]. An idealized form for this frictional force is given by the
expression

F ð _xÞ ¼ �� _xyða2 � _x2Þ, (2)

where a is a constant velocity and the step-function yðzÞ is defined to be

yðzÞ ¼
1 for z40;

0 for zo0:

� �
(3)

Note that F ð _xÞ is a piece-wise linear function, i.e., F ð _xÞ ¼ �� _x for j _xjoa, and F ð _xÞ ¼ 0 for j _xj4a. Thus,
overall F ð _xÞ is a nonlinear function of _x. This means that a is the value of the magnitude of a critical velocity:
when j _xj4a, the oscillator experiences zero damping force; while for j _xjoa, the oscillator has the usual
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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properties of a linear damped system. Putting all of this together, the harmonic oscillator with VBD has the
equation of motion

€xþ x ¼ �� _xyða2 � _x2Þ. (4)

Inspection of Eq. (4) shows that it is not immediately obvious how to apply the standard perturbation
methods [1,4] to calculate analytic approximations to the solution for the case where 0o�� 1. The major
difficulty is the term on the right-hand side.

A way out of this dilemma is to examine the behavior of the phase-space trajectories in the ðx; y ¼ _xÞ plane
[5,6]. The system equations for Eq. (4) are

dx

dt
¼ y;

dy

dt
¼ �x� �yyða2 � y2Þ. (5)

The fixed-point or equilibrium solution [6] is ðx̄; ȳÞ ¼ ð0; 0Þ and the local stability, i.e., jxj � a, jyj � a, is
determined by the solutions of

dx

dt
¼ y;

dy

dt
¼ �x� �y or €xþ x ¼ �� _x. (6)

Since Eq. (6) correspond to a linear damped oscillator, it can be concluded that ðx̄; ȳÞ ¼ ð0; 0Þ is stable [1]. One
way of determining the global stability of Eq. (4) or (5) is to examine the behavior of the function V ðx; yÞ
defined to be

V ðx; yÞ � ð1
2
Þðx2 þ y2Þ. (7)

Taking the derivative of V ðx; yÞ and using Eq. (6), it follows that

dV

dt
¼ x

dx

dt
þ y

dy

dt
¼ ��y2yða2 � y2Þp0. (8)

Eqs. (7) and (8) jointly imply that V ðtÞ � V ½xðtÞ; yðtÞ� is a monotonic decreasing function of t. This result
implies that the fixed-point, ðx̄; ȳÞ ¼ ð0; 0Þ, is globally stable [7].

Based on the above analysis, the harmonic oscillator with VBD has the following properties:
(1)
 For points in the ðx; yÞ phase-space with

y2oa2, (9)

the equation of motion is

€xþ x ¼ �� _x. (10)

For this case the trajectories correspond to the standard linearly damped harmonic oscillator, i.e., all
trajectories spiral into the stable fixed-point.
(2)
 For points in the ðx; yÞ phase-space with

y24a2, (11)

the nonlinear damping term is zero because it depends on yða2 � y2Þ. In this region of phase-space the
equation of motion is

€xþ x ¼ 0. (12)
(3)
 Thus, from comments (1) and (2), the general behavior of a trajectory in phase-space, ðxðtÞ; yðtÞÞ, can be
determined for the case where jyð0Þj4a. Without loss of generality, for this argument, the initial conditions
can be chosen to be

xð0Þ ¼ 0; yð0Þ4a. (13)
For this selection, the trajectory starts out on the vertical y-axis and has xðtÞ increasing, with yðtÞ decreasing.
At some time t1, the value of y becomes

yðt1Þ ¼ a, (14)
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Fig. 1. Plot of yðxÞ vs x for Eqs. (5). This graph corresponds to xð0Þ ¼ 5, yð0Þ ¼ 0, � ¼ 10, a2 ¼ 5.
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and from Eq. (5), the slope dy=dx develops a kink, i.e., y as a function of x is continuous, but dy=dx is
discontinuous. After t ¼ t1, the trajectory spirals around the origin (fixed-point) and, for sufficiently large yð0Þ,
may experience several other points on its trajectory where dy=dx is discontinuous. Fig. 1 illustrates this
behavior for the set of parameters

xð0Þ ¼ 5; yð0Þ ¼ 0; � ¼ 10; a2 ¼ 5. (15)

Note that the trajectory is given for the time interval 0ptp500, and four kinks occur when jyj ¼
ffiffiffi
5
p

.
Trajectories for which jyjo

ffiffiffi
5
p

correspond, as explained above, to the standard trajectories for the linear
damped oscillator and, as a consequence, are not displaced.

A general observation based on the numerical integration of Eq. (5), is that the linear harmonic oscillator
with VBD takes a longer time to approach within a given distance from the origin/fixed-point in phase-space
than the standard linear damped oscillator. This is a consequence of the fact that this oscillator spends time in
a region of phase-space, where it is essentially an undamped oscillator; see Eq. (12) and the discussion before
it.

Future problems to be studied include whether an analytic approximation to the solution of Eq. (4) can be
calculated using the standard perturbation procedures [1,4]? However, an exact solution can, in principle, be
obtained for Eq. (4) since the nonlinear damping term is piece-wise continuous.

In summary, a new functional form for damping has been introduced. This dissipative term is based on the
observed dynamics of the ball behavior for the game of volleyball [3]. The modified oscillations of a harmonic
oscillator was studied using this discontinuous, nonlinear damping function and the general properties of the
trajectories in phase-space were discussed.

The work reported here has been supported in part by a research grant from DOE to R.E. Mickens.
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